COMP 233 Discrete Mathematics

Chapter 7 Functions

Functions 7.1 Introduction to Functions

In this lecture:

□ Part 1: What is a function

Part 2: Equality of Functions
 Part 3: Examples of Functions
 Part 3: Checking Well Defined Functions

Motivation

Many issues in life can be mathematized and used as functions:

- Div(x), mod(x),
- FatherOf(x), TruthTable (x)

• In this chapter we focus on **discrete functions**

What is a Function

A function is a relation from X, the domain, to Y, the codomain, that satisfies 2 properties:

- 1) Every element x is related to some element in Y;
- 2) No element in X is related to more than one element in Y

Function Definition

• Definition

A function *f* from a set *X* to a set *Y*, denoted $f: X \to Y$, is a relation from *X*, the domain, to *Y*, the co-domain, that satisfies two properties: (1) every element in *X* is related to some element in *Y*, and (2) no element in *X* is related to more than one element in *Y*. Thus, given any element *x* in *X*, there is a unique element in *Y* that is related to *x* by *f*. If we call this element *y*, then we say that "*f* sends *x* to *y*" or "*f* maps *x* to *y*" and write $x \xrightarrow{f} y$ or $f: x \to y$. The unique element to which *f* sends *x* is denoted

$$f(x)$$
 and is called f of x , or
the output of f for the input x , or
the value of f at x , or
the image of x under f .

The set of all values of f taken together is called the *range of f* or the *image of X under f*. Symbolically,

range of f = image of X under f = { $y \in Y | y = f(x)$, for some x in X }.

Given an element y in Y, there may exist elements in X with y as their image. If f(x) = y, then x is called **a preimage of y** or **an inverse image of y**. The set of all inverse images of y is called *the inverse image of y*. Symbolically,

© Susanr

the inverse image of $y = \{x \in X \mid f(x) = y\}.$

Example

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$. Define a function **f** from X to Y

a. Write the domain and co-domain of f.

b. Find f(a), f(b), and f(c).

c. What is the range of *f*?

d. Is c an inverse image of 2? Is b an inverse image of 3?

e. Find the inverse images of 2, 4, and 1.

f. Represent f as a set of ordered pairs.

Solution

a. domain of $f = \{a, b, c\}$, co-domain of $f = \{1, 2, 3, ..., 2, ..., 2, ..., c, ...$ 4} b. f(a) = 2, f(b) = 4, f(c) = 2c. range of $f = \{2, 4\}$ d. Yes, No e. inverse image of $2 = \{a, c\}$ inverse image of $4 = \{b\}$ inverse image of $1 = \emptyset$ (since no arrows point to 1) f. {(a, 2), (b, 4), (c, 2) }

Example

Which are functions?

Example

Which are functions?

(a) There is an element x, namely b, that is not sent to any element in of Y (i.e., there is no arrow coming out of Y)(b) The element c isn't sent to a unique element of Y: that is, there are two arrows coming out of c; one pointing to 2 and the other is pointing to 3

Functions 7.1 Introduction to Functions

In this lecture:

Part 1: What is a function

Part 2: Equality of Functions

Part 3: Examples of Functions
 Part 3: Checking Well Defined Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example:

Let $L = \{0, 1, 2\}$, and define functions f and g: For all x in L $f(x) = (x^2 + x + 1) \mod 3$ and $g(x) = (x + 2)^2 \mod 3$.

Does *f***=** *g* ?

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example:

Let $L = \{0, 1, 2\}$, and define functions f and g: For all x in L $f(x) = (x^2 + x + 1) \mod 3$ and $g(x) = (x + 2)^2 \mod 3$.

Does *f***=** *g* ?

x	$x^2 + x + 1$	$f(x) = (x^2 + x + 1) \mod 3$	$(x+2)^2$	$g(x) = (x+2)^2 \bmod 3$
0	1	$1 \mod 3 = 1$	4	$4 \mod 3 = 1$
1	3	$3 \mod 3 = 0$	9	$9 \mod 3 = 0$
2	7	$7 \mod 3 = 1$	16	$16 \mod 3 = 1$

Equal functions in reality?

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example:

Let $F: \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$ be functions. Define new functions $F + G: \mathbb{R} \to \mathbb{R}$ and $G + F: \mathbb{R} \to \mathbb{R}$ as follows: For all $x \in \mathbb{R}$,

(F+G)(x) = F(x) + G(x) and (G+F)(x) = G(x) + F(x).

Does F + G = G + F?

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example:

Let $F: \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$ be functions. Define new functions $F + G: \mathbb{R} \to \mathbb{R}$ and $G + F: \mathbb{R} \to \mathbb{R}$ as follows: For all $x \in \mathbb{R}$,

$$(F+G)(x) = F(x) + G(x)$$
 and $(G+F)(x) = G(x) + F(x)$.

Does F + G = G + F?

(F+G)(x) = F(x) + G(x) by definition of F+G= G(x) + F(x) by the commutative law for addition of real numbers = (G+F)(x) by definition of G+F

Hence F + G = G + F.

Functions

7.1 Introduction to Functions

In this lecture:

Part 1: What is a function

□ Part 2: Equality of Functions

Part 3: Examples of Functions

Part 3: Checking Well Defined Functions

Examples of Functions Identity Function

$$I_X(x) = x$$
 for all x in X .

Identity function send each element of X to the element that is identical to it

E.g., $I_x(y) = y$

Examples of Functions Sequences

An infinite sequence is a function defined on set of integers that are greater than or equal to a particular integer.

E.g., Define the following sequence as a function from the set of positive integers to the set of real numbers

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots, \frac{(-1)^n}{n+1}, \dots$$

can be thought as a function *f* from the nonnegative integers to the real numbers that associate $0 \rightarrow 1$, $1 \rightarrow -1/2$, $2 \rightarrow 1/3$, ...

Send each integer
$$n \ge 0$$
 to $f(n) = \frac{(-1)^n}{n+1}$.

$$g(n+1) = \frac{(-1)^{n+2}}{n+1}$$

Examples of Functions

Function Defined on a Power Set

Recall from Section 6.1 that P(A) denotes the set of all subsets of the set A.

Define a function F: $P(\{a, b, c\}) \rightarrow Z^{nonneg}$ as follows: For each $X \in P(\{a, b, c\})$,

F(X) = the number of elements in *X.* Draw an arrow diagram for *F*.

Examples of Functions

Cartesian product

Define functions $M: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ as follows: For all ordered pairs (a, b) of integers,

M(a, b) = ab and R(a, b) = (-a, b).

M is the multiplication function that sends each pair of real numbers to the product of the two.

R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Find the following

a. M(-1, -1)	b. $M\left(\frac{1}{2},\frac{1}{2}\right)$	c. <i>M</i> (√2, √2)
d. <i>R(2,</i> 5)	e. <i>R</i> (-2, 5)	f. <i>R</i> (3, -4)

a. (-1)(-1) = 1b. (1/2)(1/2) = 1/4c. $\sqrt{2} \cdot \sqrt{2} = 2$ d. (-2, 5)e. (-(-2), 5) = (2, 5)f. (-3, -4)

Examples of Functions Logarithmic functions

Definition Logarithms and Logarithmic Functions

Let *b* be a positive real number with $b \models 1$. For each positive real number *x*, the **logarithm with base** *b* **of** *x*, written $\log_b x$, is the exponent to which *b* must be raised to obtain *x*. Symbolically,

$$\log_b x = y \quad \Leftrightarrow \quad b^y = x.$$

The logarithmic function with base *b* is the function from \mathbf{R}^+ to \mathbf{R} that takes each positive real number *x* to $\log_b x$.

- $\log_3 9 = 2$ because $3^2 = 9$.
- $\log_2(1/2) = -1$ because $2^{-1} = \frac{1}{2}$.
- $\log_{10}(1) = 0$ because $10^0 = 1$.
- log₂(2^m) = m because the exponent to which 2 must be raised to obtain 2^m is m.
- $2^{\log_2 m} = m$ because $\log_2 m$ is the exponent to which 2 must be raised to obtain m.

Examples of Functions Boolean Functions

• Definition

An (*n*-place) Boolean function f is a function whose domain is the set of all ordered n-tuples of 0's and 1's and whose co-domain is the set $\{0, 1\}$. More formally, the domain of a Boolean function can be described as the Cartesian product of n copies of the set $\{0, 1\}$, which is denoted $\{0, 1\}^n$. Thus $f: \{0, 1\}^n \to \{0, 1\}$.

Examples of Functions

Boolean Functions

Consider the three-place Boolean function defined from the set of all 3-tuples of 0's and 1's to $\{0, 1\}$ as follows: For each triple (x_1, x_2, x_3) of 0's and 1's,

 $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \mod 2.$

Describe f using an input/output table.

 $f(1, 1, 1) = (1 + 1 + 1) \mod 2 = 3 \mod 2 = 1$ $f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0$ and so on to calculate the other values

	Input		Output
x_1	x_2	x_3	$(x_1 + x_2 + x_3) \mod 2$
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

Functions

7.1 Introduction to Functions

In this lecture:

- **Part 1: What is a function**
- **Part 2: Equality of Functions**
- □ Part 3: Examples of Functions

Part 3: Checking Well Defined Functions

Well-defined Functions

Checking Whether a Function Is Well Defined

A function is **NOT** well defined if it fails to satisfy at least one of the requirements of being a function

E.g., Define a function $f: \mathbf{R} \to \mathbf{R}$ by specifying that for all real numbers *x*, f(x) is the real number *y* such that $x^2+y^2=1$.

There are two reasons why this function is not well defined: For almost all values of x either (1) there is no y that satisfies the given equation or (2) there are two different values of y that satisfy the equation

Consider when x=2 Consider when x=0

Well-defined Functions

Checking Whether a Function Is Well Defined

$$f: \mathbf{Q} \to \mathbf{Z}$$
 defines this formula:
 $f\left(\frac{m}{n}\right) = m$ for all integers *m* and *n* with $n \neq 0$.

Is *f* a well defined function?

It is not a well defined function since fractions have more than one representation as quotients of integers.

$$f\left(\frac{1}{2}\right) = 1$$
 and $f\left(\frac{3}{6}\right) = 3$,
 $f\left(\frac{1}{2}\right) \neq f\left(\frac{3}{2}\right)$

(6)

\2/ '

Well-defined Functions

Checking Whether a Function or not

Y= BortherOf(x) Y= SonOf(x) Y= FatherOf(x) Y= Wife Of(x)

•

Functions 7.2 Properties of Functions

In this lecture: Part 1: One-to-one Functions Part 2: Onto Functions Part 3: one-to-one Correspondence Functions Part 4: Inverse Functions Part 4: Inverse Functions Susanna S. Epp. Mustara Jarrar, and Amagina 2005-2018, All nights reserved

27

Definition

Let *F* be a function from a set *X* to a set *Y*. *F* is **one-to-one** (or **injective**) if, and only if, for all elements x_1 and x_2 in *X*,

if $F(x_1) = F(x_2)$, then $x_1 = x_2$,

or, equivalently,

if
$$x_1 \neq x_2$$
, then $F(x_1) \neq F(x_2)$.

Symbolically,

 $F: X \to Y$ is one-to-one $\Leftrightarrow \forall x_1, x_2 \in X$, if $F(x_1) = F(x_2)$ then $x_1 = x_2$.

لا يوجد عنصرين في المجال لِهما نفس الصورة في المدي

A Function That Is Not One-to-One

a. Do either of the arrow diagrams in Figure 7.2.2 define one-to-one functions?

b. Let $X = \{1, 2, 3\}$ and $Y = \{a, b, c, d\}$. Define $H: X \rightarrow Y$ as follows: H(1) = c, H(2) = a, and H(3) = d. Define $K: X \rightarrow Y$ as follows: K(1) = d, K(2) = b, and K(3) = d. Is either H or K one-to-one?

a. Do either of the arrow diagrams in Figure 7.2.2 define one-to-one functions?

b. Let $X = \{1, 2, 3\}$ and $Y = \{a, b, c, d\}$. Define $H: X \rightarrow Y$ as follows: H(1) = c, H(2) = a, and H(3) = d. Define $K: X \rightarrow Y$ as follows: K(1) = d, K(2) = b, and K(3) = d. Is either H or K one-to-one?

(a) F is one-to-one but G is not. F is one-to-one because no two different elements of X are sent by F to the same element of Y. G is not one-to-one because the elements a and c are both sent by G to the same element of Y: G(a) = G(c) = w but $a \neq c$.

(b) *H* is one-to-one but *K* is not. *H* is one-to-one because each of the three elements of the domain of *H* is sent by *H* to a different element of the co-domain: $H(1) \neq H(2), H(1) \neq H(3), \text{ and } H(2) \neq H(3). K$, however, is not one-to-one because K(1) = K(3) = d but $1 \neq 3$. © Susanna S. Epp, Mustafa Jarrar, and Ahmad Abusnaina 2005-2018, All rights reserved

To prove *f* is one-to-one (Direct Method): **suppose** x_1 and x_2 are elements of $X | f(x_1) = f(x_2)$, and **show** that $x_1 = x_2$.

To show that *f* is *not* one-to-one: Find elements x_1 and x_2 in *X* so $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbf{R}$

Is fone-to-one? Prove or give a counterexample.

Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbf{R}$

Is fone-to-one? Prove or give a counterexample.

Suppose x_1 and x_2 are real numbers such that $f(x_1) = f(x_2)$. [We must show that $x_1 = x_2$]By definition of f,

 $4x_1 - 1 = 4x_2 - 1$. Adding 1 to both sides gives

 $4x_1 = 4x_2$, and dividing both sides by 4 gives $x_1 = x_2$, which is what was to be shown.

Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$.

Is g one-to-one? Prove or give a counterexample.

Define
$$g: \mathbb{Z} \to \mathbb{Z}$$
 by the rule
 $g(n) = n^2$ for all $n \in \mathbb{Z}$.

Is g one-to-one? Prove or give a counterexample.

Counterexample: Let $n_1 = 2$ and $n_2 = -2$. Then by definition of g, $g(n_1) = g(2) = 2^2 = 4$ and also $g(n_2) = g(-2) = (-2)^2 = 4$. Hence $g(n_1) = g(n_2)$ but $n_1 \neq n_2$, and so g is not one-to-one.

Define g: MobileNumber \rightarrow People by the rule g(x) = Person for all $x \in$ MobileNumber

Is g one-to-one? Prove or give a counterexample.

Counter example: 0599123456 and 0569123456 are both for Sami

Define g: Fingerprints \rightarrow People by the rule g(x) = Person for all $x \in \mathbb{R}$ Fingerprint

Is g one-to-one? Prove or give a counterexample.

Prove:

In biology and forensic science: "The flexibility of friction ridge skin means that no two finger or palm prints are ever exactly alike in every detail" [w].

Functions 7.2 Properties of Functions

In this lecture:

□ Part 1: One-to-one Functions

Part 2: Onto Functions

Part 3: one-to-one Correspondence Functions
 Part 4: Inverse Functions

• Definition

Let *F* be a function from a set *X* to a set *Y*. *F* is **onto** (or **surjective**) if, and only if, given any element *y* in *Y*, it is possible to find an element *x* in *X* with the property that y = F(x). Symbolically:

 $F: X \to Y$ is onto $\Leftrightarrow \forall y \in Y, \exists x \in X$ such that F(x) = y.

a. Do either of the arrow diagrams in Figure 7.2.4 define onto functions?

b. Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c\}$. Define $H: X \to Y$ as follows: H(1) = c, H(2) = a, H(3) = c, H(4) = b. Define $K: X \to Y$ as follows: K(1) = c, K(2) = b, K(3) = b, and K(4) = c. Is either H or K onto?

a. Do either of the arrow diagrams in Figure 7.2.4 define onto functions?

b. Let X = {1, 2, 3, 4} and Y = {a, b, c}. Define H: X → Y as follows: H(1) = c, H(2) = a, H(3) = c, H(4) = b. Define K: X → Y as follows: K(1) = c, K(2) = b, K(3) = b, and K(4) = c. Is either H or K onto?
(a) F is not onto because b≠ F(x) for any x in X. G is onto because each element of Y equals G(x) for some x in X: a = G(3), b = G(1), c = G(2) = G(4), and d = G(5).

(b) H is onto but K is not.

H is onto because each of the three elements of the co-domain of *H* is the image of some element of the domain of *H*: a = H(2), b = H(4), and c=H(1)=H(3).

K, however, is not onto because $a \neq K(x)$ for any $x \inf\{1,2,3,4\}$.

To prove F is onto, (method of generalizing from the generic particular) suppose that y is any element of Y show that there is an element x of X with F(x) = y.

To prove *F* is *not* onto, you will usually find an element *y* of $Y | y \neq F(x)$ for *any x* in *X*.

Define $f: \mathbf{R} \rightarrow \mathbf{R}$ f(x) = 4x - 1 for all $x \in \mathbf{R}$

Is f onto? Prove or give a counterexample.

Define $f: \mathbf{R} \rightarrow \mathbf{R}$ f(x) = 4x - 1 for all $x \in \mathbf{R}$

Is f onto? Prove or give a counterexample.

Let $y \in \mathbf{R}$. [We must show that $\exists x \text{ in } \mathbf{R} \text{ such that } f(x) = y$.] Let x = (y + 1)/4. Then x is a real number since sums and quotients (other than by 0) of real numbers are real numbers. It follows that

$$f(x) = f\left(\frac{y+1}{4}\right)$$
 by substitution
$$= 4 \cdot \left(\frac{y+1}{4}\right) - 1$$
 by definition of f
$$= (y+1) - 1 = y$$
 by basic algebra.

[This is what was to be shown.]

Define $h: \mathbb{Z} \to \mathbb{Z}$ by the rules h(n) = 4n - 1 for all $n \in \mathbb{Z}$.

Is *h* onto? Prove or give a counterexample.

Define $h: \mathbb{Z} \to \mathbb{Z}$ by the rules h(n) = 4n - 1 for all $n \in \mathbb{Z}$.

Is *h* onto? Prove or give a counterexample.

Counterexample:

The co-domain of h is Z and $0 \in \mathbb{Z}$. But $h(n) \neq 0$ for any integer n. For if h(n) = 0, then

4n - 1 = 0 by definition of *h*

which implies that

4n = 1 by adding 1 to both sides

and so

$$n = \frac{1}{4}$$
 by dividing both sides by 4.

© Susanna But 1/4 is not an integer. Hence there is no integer *n* for which f(n) = 0, and thus *f* is not onto.

Define g: MobileNumber \rightarrow People by the rule g(x) = Person for all $x \in$ MobileNumber

Is g onto? Prove or give a counterexample.

Counter example: Sami does not have a mobile number

Define g: Fingerprints \rightarrow People by the rule g(x) = Person for all $x \in$ Fingerprint

Is g onto? Prove or give a counterexample.

Prove: In biology and forensic science: there is no person without fingerprint

Functions 7.2 Properties of Functions

In this lecture:

- □ Part 1: One-to-one Functions
- **Part 2: Onto Functions**
- Part 3: one-to-one Correspondence Functions

51

Part 4: Inverse Functions

One-to-One Correspondences

Definition

A one-to-one correspondence (or bijection) from a set X to a set Y is a function $F: X \rightarrow Y$ that is both one-to-one and onto.

String-Reversing Function

Let *T* be the set of all finite strings of x's and y's. Define

 $g: T \rightarrow T$ by the rule: For all strings $s \in T$, g(s) = the string obtained by writing the characters of *s* in reverse order.

E.g.,
$$g(``Ali'') = ``ilA''$$

Is g a one-to-one correspondence from T to itself?

(a)one-to-one: (b)onto

String-Reversing Function

Let *T* be the set of all finite strings of *x*'s and *y*'s. Define $g: T \rightarrow T$ by the rule: For all strings $s \in T$, g(s) = the string obtained by writing the characters of *s* in reverse order. E.g., g(``Ali'') = ``ilA''

(a) one-to-one:

- suppose that for some strings s1 and s2 in T, g(s1) = g(s2). [We must show that s1 = s2.]
- Now to say that g(s1) = g(s2) is the same as saying that the string obtained by writing the characters of s1 in reverse order equals the string obtained by writing the characters of s2 in reverse order.
- But if *s*1 and *s*2 are equal when written in reverse order, then they must be equal to original.

In other words, $S_1 = S_2 [as was to be shown]$. © Susanna S. Epp, Mustafa Jarrar, and Ahmad Abusnaina 2005-2018, All rights reserved

String-Reversing Function

(b) onto: suppose *t* is a string in *T*.

- [We must find a string s in T such that g(s) = t.]
- Let s = g(t).
- By definition of g, s = g(t) is the string in *T* obtained by writing the characters of *t* in reverse order.
- But when the order of the characters of a string is reversed once and then reversed again, the original string is recovered.
- g(s) = g(g(t))
 - = the string obtained by writing the characters of t in reverse order and then writing those characters in reverse order again

= **t**

This is what was to be shown.

A Function of Two Variables

Define a function $F: \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$,

F(x, y) = (x + y, x - y).

Is *F* a one-to-one correspondence from $\mathbf{R} \times \mathbf{R}$ to itself?

A Function of Two Variables

Define a function $F: \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$,

F(x, y) = (x + y, x - y).

Is *F* a one-to-one correspondence from $\mathbf{R} \times \mathbf{R}$ to itself?

Functions 7.2 Properties of Functions

In this lecture:

Part 1: One-to-one Functions

Part 2: Onto Functions

Part 3: one-to-one Correspondence Functions

58

Part 4: Inverse Functions

Inverse Functions

Theorem 7.2.2

Suppose $F: X \to Y$ is a one-to-one correspondence; that is, suppose F is one-to-one and onto. Then there is a function $F^{-1}: Y \to X$ that is defined as follows: Given any element y in Y,

 $F^{-1}(y)$ = that unique element x in X such that F(x) equals y.

In other words,

$$F^{-1}(y) = x \Leftrightarrow y = F(x).$$

 \rightarrow Is it always that the inverse of a function is a function?

Finding Inverse Functions

The function $f: \mathbf{R} \to \mathbf{R}$ defined by the formula f(x) = 4x-1 for all real numbers x

(was shown one-to-one and onto) Find its inverse function?

Finding Inverse Functions

The function $f: \mathbf{R} \to \mathbf{R}$ defined by the formula f(x) = 4x-1 for all real numbers x

(was shown one-to-one and onto) Find its inverse function?

Solution For any [particular but arbitrarily chosen] y in **R**, by definition of f^{-1} , $f^{-1}(y) =$ that unique real number x such that f(x) = y.

But

$$f(x) = y$$

$$\Leftrightarrow 4x - 1 = y$$
by definition of f
$$\Leftrightarrow x = \frac{y + 1}{4}$$
by algebra.
Hence $f^{-1}(y) = \frac{y + 1}{4}$.

Functions 7.2 Properties of Functions

In this lecture:

- □ Part 1: One-to-one Functions
- Part 2: Onto Functions
- □ Part 3: one-to-one Correspondence Functions
- Part 4: Inverse Functions
- Part 5: Applications: Hash and Logarithmic Functions

Hash Functions

- Maps data of arbitrary length to data of a fixed length.
- Very much used in databases and security

Hash Functions

How to store long (ID numbers) for a small set of people

For example: **n** is an ID number, and **m** is number of people we have $Hash(n) = n \mod m$ $Hash(n) = n \mod 7$ for all numbers *n*.

0	356-63-3102
1	
2	513-40-8716
3	223-79-9061
4	
5	328-34-3419
6	

collision?

Exponential and Logarithmic Functions

$$\log_b x = y \iff b^y = x$$

Relations between Exponential and Logarithmic Functions

Laws of Exponents

If b and c are any positive real numbers and u and v are any real numbers, the following laws of exponents hold true:

$$b^u b^v = b^{u+v} \tag{7.2.1}$$

$$(b^u)^v = b^{uv} 7.2.2$$

$$\frac{b^u}{b^v} = b^{u-v} \tag{7.2.3}$$

The exponential and logarithmic functions are one-to-one and onto. Thus the following properties hold:

For any positive real number b with $b \neq 1$, if $b^u = b^v$ then u = v for all real numbers u and v,

and

if $\log_b u = \log_b v$ then u = v for all positive real numbers u and v. 7.2.6

7.2.5

Relations between Exponential and Logarithmic Functions

We can derive additional facts about exponents and logarithms, e.g.:

Theorem 7.2.1 Properties of Logarithms

For any positive real numbers *b*, *c* and *x* with $b \neq 1$ and $c \neq 1$:

a.
$$\log_b(xy) = \log_b x + \log_b y$$

b. $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
c. $\log_b(x^a) = a \log_b x$
d. $\log_c x = \frac{\log_b x}{\log_b c}$
How to prove this?

Using the One-to-Oneness of the Exponential Function

Prove that:

$$\log_c x = \frac{\log_b x}{\log_b c}.$$

Solution Suppose positive real numbers *b*, *c*, and *x* are given. Let

1

(1)
$$u = \log_b c$$
 (2) $v = \log_c x$ (3) $w = \log_b x$.

Then, by definition of logarithm,

(1')
$$c = b^u$$
 (2') $x = c^v$ (3') $x = b^w$.

Substituting (1') into (2') and using one of the laws of exponents gives

$$x = c^v = (b^u)^v = b^{uv}$$
 by 7.2.2

But by (3), $x = b^w$ also. Hence

$$b^{uv} = b^w$$
,

and so by the one-to-oneness of the exponential function (property 7.2.5),

$$uv = w$$
.

Substituting from (1), (2), and (3) gives that

$$(\log_b c)(\log_c x) = \log_b x.$$

68

And dividing both sides by $\log_b c$ (which is nonzero because $c \neq 1$) results in

© Susanna S. Epp, Mustafa Jarrar, and **Ahmad Abusnaina** 2005-2018, All rights the served $\frac{\log_b x}{\log_b c}$