COMP 233 Discrete Mathematics

Chapter 7 Functions

Functions

7.1 Introduction to Functions

In this lecture:

Dart 1: What is a function

\square Part 2: Equality of Functions
\square Part 3: Examples of Functions
\square Part 3: Checking Well Defined Functions

Motivation

Many issues in life can be mathematized and used as functions:

- $\operatorname{Div}(\mathrm{x}), \bmod (\mathrm{x}), \ldots$.
- FatherOf(x), TruthTable (x)
- In this chapter we focus on discrete functions

What is a Function

A function is a relation from X , the domain, to Y , the codomain, that satisfies 2 properties:

1) Every element x is related to some element in Y;
2) No element in X is related to more than one element in Y

Function Definition

- Definition

A function \boldsymbol{f} from a set \boldsymbol{X} to a set \boldsymbol{Y}, denoted $f: X \rightarrow Y$, is a relation from X, the domain, to Y, the co-domain, that satisfies two properties: (1) every element in X is related to some element in Y, and (2) no element in X is related to more than one element in Y. Thus, given any element x in X, there is a unique element in Y that is related to x by f. If we call this element y, then we say that " f sends x to y " or " f maps x to y " and write $x \xrightarrow{f} y$ or $f: x \rightarrow y$. The unique element to which f sends x is denoted

$$
\begin{array}{ll}
f(\boldsymbol{x}) \text { and is called } & f \text { of } \boldsymbol{x} \text {, or } \\
\text { the output of } f \text { for the input } \boldsymbol{x} \text {, or } \\
\text { the value of } f \text { at } \boldsymbol{x} \text {, or } \\
& \text { the image of } \boldsymbol{x} \text { under } f .
\end{array}
$$

The set of all values of f taken together is called the range of f or the image of X under f. Symbolically,

$$
\text { range of } \boldsymbol{f}=\text { image of } \boldsymbol{X} \text { under } f=\{y \in Y \mid y=f(x) \text {, for some } x \text { in } X\} .
$$

Given an element y in Y, there may exist elements in X with y as their image. If $f(x)=y$, then x is called a preimage of \boldsymbol{y} or an inverse image of \boldsymbol{y}. The set of all inverse images of y is called the inverse image of y. Symbolically,
the inverse image of $\boldsymbol{y}=\{x \in X \mid f(x)=y\}$.

Example

Let $X=\{a, b, c\}$ and $Y=\{1,2,3,4\}$. Define a function \boldsymbol{f} from X to Y

a. Write the domain and co-domain of f.
b. Find $f(a), \quad f(b)$, and $f(c)$.
c. What is the range of f ?
d. Is c an inverse image of 2? Is b an inverse image of 3 ?
e. Find the inverse images of 2,4 , and 1 .
f. Represent f as a set of ordered pairs.

Solution

a. domain of $f=\{a, b, c\}$, co-domain of $f=\{1,2,3$, 4\}
b. $f(a)=2, f(b)=4, f(c)=2$
c. range of $f=\{2,4\}$
d. Yes, No
e. inverse image of $2=\{a, c\}$ inverse image of $4=\{b\}$ inverse image of $1=\varnothing$ (since no arrows point to 1) f. $\{(\mathrm{a}, 2),(\mathrm{b}, 4),(\mathrm{c}, 2)\}$

Example

Which are functions?

Example

Which are functions?

(a)

(b)

(c)
(a) There is an element x , namely b , that is not sent to any element in of Y (i.e., there is no arrow coming out of Y)
(b) The element c isn't sent to a unique element of Y : that is, there are two arrows coming out of c ; one pointing to 2 and the other is pointing to 3

Functions

7.1 Introduction to Functions

In this lecture:

\square Part 1: What is a function
\square Part 2: Equality of Functions
\square Part 3: Examples of Functions
\square Part 3: Checking Well Defined Functions

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \rightarrow Y$ and $G: X \rightarrow Y$ are functions, then $F=G$ if, and only if, $F(x)=G(x)$ for all $x \in X$.

Example:

Let $L=\{0,1,2\}$, and define functions f and g :
For all x in L

$$
f(x)=\left(x^{2}+x+1\right) \bmod 3 \text { and } g(x)=(x+2)^{2} \bmod 3 .
$$

Does $f=g$?

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \rightarrow Y$ and $G: X \rightarrow Y$ are functions, then $F=G$ if, and only if, $F(x)=G(x)$ for all $x \in X$.

Example:

Let $L=\{0,1,2\}$, and define functions f and g :
For all x in L

$$
f(x)=\left(x^{2}+x+1\right) \bmod 3 \text { and } g(x)=(x+2)^{2} \bmod 3 .
$$

Does $f=g$?

x	$x^{2}+x+1$	$f(x)=\left(x^{2}+x+1\right) \bmod 3$	$(x+2)^{2}$	$g(x)=(x+2)^{2} \bmod 3$
0	1	$1 \bmod 3=1$	4	$4 \bmod 3=1$
1	3	$3 \bmod 3=0$	9	$9 \bmod 3=0$
2	7	$7 \bmod 3=1$	16	$16 \bmod 3=1$

Equal functions in reality?

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \rightarrow Y$ and $G: X \rightarrow Y$ are functions, then $F=G$ if, and only if, $F(x)=G(x)$ for all $x \in X$.

Example:

Let $F: \mathbf{R} \rightarrow \mathbf{R}$ and $G: \mathbf{R} \rightarrow \mathbf{R}$ be functions. Define new functions $F+G: \mathbf{R} \rightarrow \mathbf{R}$ and $G+F: \mathbf{R} \rightarrow \mathbf{R}$ as follows: For all $x \in \mathbf{R}$,

$$
(F+G)(x)=F(x)+G(x) \quad \text { and } \quad(G+F)(x)=G(x)+F(x)
$$

Does $\boldsymbol{F}+\boldsymbol{G}=\boldsymbol{G}+\boldsymbol{F}$?

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \rightarrow Y$ and $G: X \rightarrow Y$ are functions, then $F=G$ if, and only if, $F(x)=G(x)$ for all $x \in X$.

Example:

Let $F: \mathbf{R} \rightarrow \mathbf{R}$ and $G: \mathbf{R} \rightarrow \mathbf{R}$ be functions. Define new functions $F+G: \mathbf{R} \rightarrow \mathbf{R}$ and $G+F: \mathbf{R} \rightarrow \mathbf{R}$ as follows: For all $x \in \mathbf{R}$,

$$
(F+G)(x)=F(x)+G(x) \quad \text { and } \quad(G+F)(x)=G(x)+F(x)
$$

Does $\boldsymbol{F}+\boldsymbol{G}=\boldsymbol{G}+\boldsymbol{F}$?

$$
\begin{aligned}
(F+G)(x) & =F(x)+G(x) & & \text { by definition of } F+G \\
& =G(x)+F(x) & & \text { by the commutative law for addition of real numbers } \\
& =(G+F)(x) & & \text { by definition of } G+F
\end{aligned}
$$

Hence $F+G=G+F$.

Functions

7.1 Introduction to Functions

In this lecture:

\square Part 1: What is a function
\square Part 2: Equality of Functions
\square Part 3: Examples of Functions
\square Part 3: Checking Well Defined Functions

Examples of Functions
 Identity Function

$$
I_{X}(x)=x \text { for all } x \text { in } X
$$

Identity function send each element of X to the element that is identical to it

$$
\text { E.g., } I_{x}(y)=y
$$

Examples of Functions

Sequences

An infinite sequence is a function defined on set of integers that are greater than or equal to a particular integer.
E.g., Define the following sequence as a function from the set of positive integers to the set of real numbers

$$
1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}, \ldots, \frac{(-1)^{n}}{n+1}, \ldots
$$

can be thought as a function f from the nonnegative integers to the real numbers that associate $0 \rightarrow 1,1 \rightarrow-1 / 2,2 \rightarrow 1 / 3, \ldots$

$$
\begin{aligned}
& \text { Send each integer } n \geq 0 \text { to } f(n)=\frac{(-1)^{n}}{n+1} . \\
& \qquad g(n+1)=\frac{(-1)^{n+2}}{n+1}
\end{aligned}
$$

Examples of Functions

Function Defined on a Power Set

Recall from Section 6.1 that $\mathrm{P}(\mathrm{A})$ denotes the set of all subsets of the set A .

Define a function $\mathrm{F}: \mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}) \rightarrow \mathrm{Z}^{\text {nonneg }}$ as follows: For each $X \in \mathrm{P}(\{a, b, c\})$,
$F(X)=$ the number of elements in X. Draw an arrow diagram for F.

Examples of Functions
 Cartesian product

Define functions $M: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ and $R: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ as follows: For all ordered pairs (a, b) of integers,

$$
M(a, b)=a b \quad \text { and } \quad R(a, b)=(-a, b) .
$$

M is the multiplication function that sends each pair of real numbers to the product of the two.
R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Find the following
a. $M(-1,-1)$
b. $M\left(\frac{1}{2}, \frac{1}{2}\right)$
c. $M(\sqrt{2}, \sqrt{2})$
d. $R(2,5)$
e. $R(-2,5)$
f. $R(3,-4)$
a. $(-1)(-1)=1$
b. $(1 / 2)(1 / 2)=1 / 4$
c. $\sqrt{2} \cdot \sqrt{2}=2$
d. $(-2,5)$
e. $(-(-2), 5)=(2,5)$
f. $(-3,-4)$

Examples of Functions Logarithmic functions

- Definition Logarithms and Logarithmic Functions

Let b be a positive real number with $b /=1$. For each positive real number x, the logarithm with base \boldsymbol{b} of \boldsymbol{x}, written $\log _{b} x$, is the exponent to which b must be raised to obtain x. Symbolically,

$$
\log _{b} x=y \quad \Leftrightarrow \quad b^{y}=x .
$$

The logarithmic function with base \boldsymbol{b} is the function from \mathbf{R}^{+}to \mathbf{R} that takes each positive real number x to $\log _{b} x$.

- $\log _{3} 9=2$ because $3^{2}=9$.
- $\log _{2}(1 / 2)=-1$ because $2^{-1}=1 / 2$.
- $\log _{10}(1)=0$ because $10^{0}=1$.
- $\log _{2}\left(2^{m}\right)=m$ because the exponent to which 2 must be raised to obtain 2^{m} is m.
- $2^{\log _{2} m}=m$ because $\log _{2} m$ is the exponent to which 2 must be

Examples of Functions Boolean Functions

- Definition

An (n-place) Boolean function f is a function whose domain is the set of all ordered n-tuples of 0 's and 1 's and whose co-domain is the set $\{0,1\}$. More formally, the domain of a Boolean function can be described as the Cartesian product of n copies of the set $\{0,1\}$, which is denoted $\{0,1\}^{n}$. Thus $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Inpuit			Outpuit
\boldsymbol{P}	\boldsymbol{Q}	\boldsymbol{R}	\boldsymbol{S}
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

Examples of Functions
 Boolean Functions

Consider the three-place Boolean function defined from the set of all 3-tuples of 0 's and 1 's to $\{0,1\}$ as follows: For each triple (x_{1}, x_{2}, x_{3}) of 0 's and 1 's,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right) \bmod 2 .
$$

Describe f using an input/output table.

$f(1,1,1)=(1+1+1) \bmod 2=3 \bmod 2=1$	Input		
$f(1,1,0)=(1+1+0) \bmod 2=2 \bmod 2=0$	x_{1}	x_{2}	x_{3}
and so on to calculate the other values	$\left(x_{1}+\mathbf{x}_{2}+x_{3}\right) \bmod 2$		
	1	1	1

Functions

7.1 Introduction to Functions

In this lecture:
\square Part 1: What is a function
\square Part 2: Equality of Functions
\square Part 3: Examples of Functions
\square Part 3: Checking Well Defined Functions

Well-defined Functions

Checking Whether a Function Is Well Defined

A function is NOT well defined if it fails to satisfy at least one of the requirements of being a function
E.g., Define a function $f: \mathbf{R} \rightarrow \mathbf{R}$ by specifying that for all real numbers $x, f(x)$ is the real number y such that $x^{2}+y^{2}=1$.

There are two reasons why this function is not well defined: For almost all values of x either (1) there is no y that satisfies the given equation or (2) there are two different values of y that satisfy the equation

Consider when $\mathrm{x}=2$
Consider when $\mathrm{x}=0$

Well-defined Functions

Checking Whether a Function Is Well Defined

$f: \mathbf{Q} \rightarrow \mathbf{Z}$ defines this formula:
$f\left(\frac{m}{n}\right)=m \quad$ for all integers m and n with $n \neq 0$.
Is f a well defined function?

It is not a well defined function since fractions have more than $f\left(\frac{1}{2}\right)=1$ and $f\left(\frac{3}{6}\right)=3$, one representation as quotients of integers.

Well-defined Functions

Checking Whether a Function or not

$Y=$ BortherOf(x)
 $Y=$ SonOf(x)
 $Y=$ FatherOf(x)
 $Y=$ Wife Of(x)

Functions

7.2 Properties of Functions

In this lecture:

One-to-One Functions

- Definition

Let F be a function from a set X to a set $Y . F$ is one-to-one (or injective) if, and only if, for all elements x_{1} and x_{2} in X,

$$
\text { if } F\left(x_{1}\right)=F\left(x_{2}\right) \text {, then } x_{1}=x_{2} \text {, }
$$

or, equivalently,
Symbolically,

$$
F: X \rightarrow Y \text { is one-to-one } \Leftrightarrow \forall x_{1}, x_{2} \in X \text {, if } F\left(x_{1}\right)=F\left(x_{2}\right) \text { then } x_{1}=x_{2}
$$

لا يوجد عنصرين في الجال لمهما نفس الصورة في المدى

One-to-One Functions

Any two distinct elements of X are sent to two distinct elements of Y.

Two distinct elements of X are sent to the same element of Y.

One-to-One Functions

a. Do either of the arrow diagrams in Figure 7.2.2 define one-to-one functions?

Figure 7.2.2
b. Let $X=\{1,2,3\}$ and $Y=\{a, b, c, d\}$. Define $H: X \rightarrow Y$ as follows: $H(1)=c$, $H(2)=a$, and $H(3)=d$. Define $K: X \rightarrow Y$ as follows: $K(1)=d, K(2)=b$, and $K(3)=d$. Is either H or K one-to-one?

One-to-One Functions

a. Do either of the arrow diagrams in Figure 7.2.2 define one-to-one functions?

Figure 7.2.2
b. Let $X=\{1,2,3\}$ and $Y=\{a, b, c, d\}$. Define $H: X \rightarrow Y$ as follows: $H(1)=c$, $H(2)=a$, and $H(3)=d$. Define $K: X \rightarrow Y$ as follows: $K(1)=d, K(2)=b$, and $K(3)=d$. Is either H or K one-to-one?
(a) F is one-to-one but G is not. F is one-to-one because no two different elements of X are sent by F to the same element of $Y . G$ is not one-to-one because the elements a and c are both sent by G to the same element of $Y: G(a)=G(c)=$ w but $a \neq c$.
(b) H is one-to-one but K is not. H is one-to-one because each of the three elements of the domain of H is sent by H to a different element of the co-domain:
$H(1) \neq H(2), H(1) \neq H(3)$, and $H(2) \neq H(3) . K$, however, is not one-to-one because
$K(1)=K(3)=d$ but $1 \neq 3$
© Susanna S. Epp, Mustafa Jarrar, and Ahmad Abusnaina 2005-2018, All rights reserved

Proving/Disproving Functions are One-to-One

To prove f is one-to-one (Direct Method):
suppose x_{1} and x_{2} are elements of $X \mid f\left(x_{1}\right)=f\left(x_{2}\right)$, and show that $x_{1}=x_{2}$.

To show that f is not one-to-one:
Find elements x_{1} and x_{2} in X so $f\left(x_{1}\right)=f\left(x_{2}\right)$ but $x_{1} \neq x_{2}$

Proving/Disproving Functions are One-to-One Example 1

Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by the rule

$$
f(x)=4 x-1 \quad \text { for all } x \in \mathbf{R}
$$

Is f one-to-one? Prove or give a counterexample.

Proving/Disproving Functions are One-to-One Example 1

Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by the rule

$$
f(x)=4 x-1 \quad \text { for all } x \in \mathbf{R}
$$

Is f one-to-one? Prove or give a counterexample.

Suppose x_{1} and x_{2} are real numbers such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. [We must show that $x_{1}=x_{2}$] By definition of f,

$$
\begin{aligned}
& 4 x_{1}-1=4 x_{2}-1 \text {. Adding } 1 \text { to both sides gives } \\
& 4 x_{1}=4 x_{2}, \text { and dividing both sides by } 4 \text { gives } \\
x_{1}= & x_{2} \text {, which is what was to be shown. }
\end{aligned}
$$

Proving/Disproving Functions are One-to-One Example 2

Define $g: \mathbf{Z} \rightarrow \mathbf{Z}$ by the rule

$$
g(n)=n^{2} \quad \text { for all } n \in \mathbf{Z}
$$

Is g one-to-one? Prove or give a counterexample.

Proving/Disproving Functions are One-to-One Example 2

Define $g: \mathbf{Z} \rightarrow \mathbf{Z}$ by the rule

$$
g(n)=n^{2} \quad \text { for all } n \in \mathbf{Z}
$$

Is g one-to-one? Prove or give a counterexample.

Counterexample:

Let $n_{1}=2$ and $n_{2}=-2$. Then by definition of g,

$$
\begin{array}{ll}
& g\left(n_{1}\right)=g(2)=2^{2}=4 \text { and also } \\
& g\left(n_{2}\right)=g(-2)=(-2)^{2}=4 . \\
\text { Hence } \quad g\left(n_{1}\right)=g\left(n_{2}\right) \text { but } n_{1} \neq n_{2},
\end{array}
$$

$$
\text { and so } g \text { is not one-to-one. }
$$

Proving/Disproving Functions are One-to-One Example 3

Define g : MobileNumber \rightarrow People by the rule $g(x)=$ Person \quad for all $x \in$ MobileNumber

Is g one-to-one? Prove or give a counterexample.

Counter example:

$$
0599123456 \text { and } 0569123456 \text { are both for Sami }
$$

Proving/Disproving Functions are One-to-One Example 4

Define $g:$ Fingerprints \rightarrow People by the rule $g(x)=$ Person for all $x \in \mathbf{R}$ Fingerprint

Is g one-to-one? Prove or give a counterexample.

```
Prove:
In biology and forensic science: "The flexibility of friction ridge skin means that no two finger or palm prints are ever exactly alike in every detail" [w].
```


Functions

7.2 Properties of Functions

In this lecture:

\square Part 1: One-to-one Functions
Part 2: Onto Functions
\square Part 3: one-to-one Correspondence Functions
\square Part 4: Inverse Functions
© Susama s. Epp, Pusart 5: Aprant; And plications: Hash and Logarithmic Functions

Onto Functions

- Definition

Let F be a function from a set X to a set $Y . F$ is onto (or surjective) if, and only if, given any element y in Y, it is possible to find an element x in X with the property that $y=F(x)$.

Symbolically:

$$
F: X \rightarrow Y \text { is onto } \quad \Leftrightarrow \quad \forall y \in Y, \exists x \in X \text { such that } F(x)=y .
$$

لا يوجد عنصر في الجال المقابل ليس صورة لعنصر في الجال

Onto Functions

Figure 7.2.3(a) A Function That Is Onto

Figure 7.2.3(b) A Function That Is Not Onto

Onto Functions

a. Do either of the arrow diagrams in Figure 7.2.4 define onto functions?

Figure 7.2.4
b. Let $X=\{1,2,3,4\}$ and $Y=\{a, b, c\}$. Define $H: X \rightarrow Y$ as follows: $H(1)=c$, $H(2)=a, H(3)=c, H(4)=b$. Define $K: X \rightarrow Y$ as follows: $K(1)=c, K(2)=b$, $K(3)=b$, and $K(4)=c$. Is either H or K onto?

Onto Functions

a. Do either of the arrow diagrams in Figure 7.2.4 define onto functions?

Figure 7.2.4
b. Let $X=\{1,2,3,4\}$ and $Y=\{a, b, c\}$. Define $H: X \rightarrow Y$ as follows: $H(1)=c$, $H(2)=a, H(3)=c, H(4)=b$. Define $K: X \rightarrow Y$ as follows: $K(1)=c, K(2)=b$, $K(3)=b$, and $K(4)=c$. Is either H or K onto?
(a) F is not onto because $b \neq F(x)$ for any x in X.
\boldsymbol{G} is onto because each element of Y equals $G(x)$ for some x in X :
$a=G(3), b=G(1), c=G(2)=G(4)$, and $d=G(5)$.
(b) \boldsymbol{H} is onto but K is not.
H is onto because each of the three elements of the co-domain of H is the image of some element of the domain of $H: a=H(2), b=H(4)$, and $c=H(1)=H(3)$.
K, however, is not onto because $a \neq K(x)$ for any x in $\{1,2,3,4\}$.

Proving/Disproving Functions are Onto

To prove F is onto, (method of generalizing from the generic particular) suppose that y is any element of Y
show that there is an element x of X with $F(x)=y$.

To prove F is not onto, you will usually find an element y of $Y \mid y \neq F(x)$ for any x in X.

Proving/Disproving Functions are Onto Example 1

Define $f: \mathbf{R} \rightarrow \mathbf{R}$

$$
f(x)=4 x-1 \quad \text { for all } x \in \mathbf{R}
$$

Is f onto? Prove or give a counterexample.

Proving/Disproving Functions are Onto Example 1

Define $f: \mathbf{R} \rightarrow \mathbf{R}$

$$
f(x)=4 x-1 \quad \text { for all } x \in \mathbf{R}
$$

Is f onto? Prove or give a counterexample.
Let $y \in \mathbf{R}$. [We must show that $\exists x$ in \mathbf{R} such that $f(x)=y$.] Let $x=(y+1) / 4$. Then x is a real number since sums and quotients (other than by 0) of real numbers are real numbers. It follows that

$$
\begin{aligned}
f(x) & =f\left(\frac{y+1}{4}\right) & & \text { by substitution } \\
& =4 \cdot\left(\frac{y+1}{4}\right)-1 & & \text { by definition of } f \\
& =(y+1)-1=y & & \text { by basic algebra. }
\end{aligned}
$$

[This is what was to be shown.]
© Susanna S. Epp, Mustafa Jarrar, and Ahmad Abusnaina 2005-2018, All rights reserved

Proving/Disproving Functions are Onto Example 2

Define $h: \mathbf{Z} \rightarrow \mathbf{Z}$ by the rules
$h(n)=4 n-1 \quad$ for all $n \in \mathbf{Z}$.

Is h onto? Prove or give a counterexample.

Proving/Disproving Functions are Onto Example 2

Define $h: \mathbf{Z} \rightarrow \mathbf{Z}$ by the rules

$$
h(n)=4 n-1 \quad \text { for all } n \in \mathbf{Z}
$$

Is h onto? Prove or give a counterexample.

Counterexample:

The co-domain of h is \mathbf{Z} and $0 \in \mathbf{Z}$. But $h(n) \neq 0$ for any integer n. For if $h(n)=0$, then

$$
4 n-1=0 \quad \text { by definition of } h
$$

which implies that

$$
4 n=1 \quad \text { by adding } 1 \text { to both sides }
$$

and so

$$
n=\frac{1}{4} \quad \text { by dividing both sides by } 4 \text {. }
$$

But $1 / 4$ is not an integer. Hence there is no integer n for which $f(n)=0$, and

Proving/Disproving Functions are Onto Example 3

Define g : MobileNumber \rightarrow People by the rule $g(x)=$ Person for all $x \in$ MobileNumber

Is g onto? Prove or give a counterexample.

Proving/Disproving Functions are Onto Example 4

Define g : Fingerprints \rightarrow People by the rule $g(x)=$ Person \quad for all $x \in$ Fingerprint

Is g onto? Prove or give a counterexample.

```
Prove:
In biology and forensic science: there is no person without fingerprint
```


Functions

7.2 Properties of Functions

In this lecture:

\square Part 1: One-to-one Functions
\square Part 2: Onto Functions
\square Part 3: one-to-one Correspondence Functions
\square Part 4: Inverse Functions

One-to-One Correspondences

- Definition

A one-to-one correspondence (or bijection) from a set X to a set Y is a function $F: X \rightarrow Y$ that is both one-to-one and onto.
لا يوجد عنصر في الجال المقابل ليس صورة لعنصر في الجال، او صورة لعنصرين في الجال

String-Reversing Function

Let T be the set of all finite strings of x 's and y 's. Define
$g: T \rightarrow T$ by the rule: For all strings $s \in T$, $g(s)=$ the string obtained by writing the characters of \boldsymbol{s} in reverse order.
E.g., g("Ali") = "ilA"

Is g a one-to-one correspondence from T to itself?
(a)one-to-one:
(b)onto

String-Reversing Function

 Let T be the set of all finite strings of x 's and y 's. Define $g: T \rightarrow T$ by the rule: For all strings $s \in T$, $g(s)=$ the string obtained by writing the characters of s in reverse order. E.g., g("Ali") $=$ "ilA"(a) one-to-one:

- suppose that for some strings $s 1$ and $s 2$ in T,

$$
g(s 1)=g(s 2) .[\text { We must show that } s 1=s 2 .]
$$

- Now to say that $g(s 1)=g(s 2)$ is the same as saying that the string obtained by writing the characters of $\boldsymbol{s} \mathbf{1}$ in reverse order equals the string obtained by writing the characters of $\boldsymbol{s} \mathbf{2}$ in reverse order.
- But if $\boldsymbol{s} \mathbf{1}$ and $\boldsymbol{s} \mathbf{2}$ are equal when written in reverse order, then they must be equal to original.
In other words, $S 1=s 2$ [as was to be shown].

String-Reversing Function

(b) onto: suppose \boldsymbol{t} is a string in T.

- [We must find a string \boldsymbol{s} in T such that $g(s)=t$.]
- Let $\boldsymbol{s}=\boldsymbol{g}(\boldsymbol{t})$.
- By definition of $g, s=g(t)$ is the string in T obtained by writing the characters of \boldsymbol{t} in reverse order.
- But when the order of the characters of a string is reversed once and then reversed again, the original string is recovered.
- $\quad g(\boldsymbol{s})=g(g(\boldsymbol{t}))$
$=$ the string obtained by writing the characters of \boldsymbol{t} in reverse order and then writing those characters in reverse order again

$$
=\boldsymbol{t}
$$

This is what was to be shown.

A Function of Two Variables

Define a function $F: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$,

$$
F(x, y)=(x+y, x-y) .
$$

Is F a one-to-one correspondence from $\mathbf{R} \times \mathbf{R}$ to itself?

A Function of Two Variables

Define a function $F: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$,

$$
F(x, y)=(x+y, x-y) .
$$

Is F a one-to-one correspondence from $\mathbf{R} \times \mathbf{R}$ to itself?

Functions

7.2 Properties of Functions

In this lecture:

\square Part 1: One-to-one Functions
\square Part 2: Onto Functions
\square Part 3: one-to-one Correspondence Functions
\square Part 4: Inverse Functions
\square Part 5: Applications: Hash and Logarithmic Functions

Inverse Functions

Theorem 7.2.2

Suppose $F: X \rightarrow Y$ is a one-to-one correspondence; that is, suppose F is one-to-one and onto. Then there is a function $\boldsymbol{F}^{\mathbf{- 1}}: \boldsymbol{Y} \rightarrow \boldsymbol{X}$ that is defined as follows:

Given any element y in Y,

$$
\boldsymbol{F}^{-\mathbf{1}}(\boldsymbol{y})=\text { that unique element } x \text { in } X \text { such that } F(x) \text { equals } y .
$$

In other words,

$$
F^{-1}(y)=x \Leftrightarrow y=F(x)
$$

$$
X=\text { domain of } F \quad Y=\text { co-domain of } F
$$

\rightarrow Is it always that the inverse of a function is a function?

Finding Inverse Functions

The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by the formula $f(x)=4 x-1$ for all real numbers x
(was shown one-to-one and onto)
Find its inverse function?

Finding Inverse Functions

The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by the formula $f(x)=4 x-1$ for all real numbers x (was shown one-to-one and onto)
Find its inverse function?

Solution For any [particular but arbitrarily chosen] y in \mathbf{R}, by definition of f^{-1},

$$
f^{-1}(y)=\text { that unique real number } x \text { such that } f(x)=y \text {. }
$$

But

$$
\begin{aligned}
& f(x) & =y & \\
\Leftrightarrow & & 4 x-1 & =y \\
\Leftrightarrow & x & =\frac{y+1}{4} &
\end{aligned} \quad \text { by definition of } f
$$

Hence $f^{-1}(y)=\frac{y+1}{4}$.
© Susanna S. Epp, Mustafa Jarrar, and Ahmad Abusnaina 2005-2018, All rights reserved

Functions

7.2 Properties of Functions

In this lecture:

\square Part 1: One-to-one Functions
\square Part 2: Onto Functions
\square Part 3: one-to-one Correspondence Functions
\square Part 4: Inverse Functions
\square Part 5: Applications: Hash and Logarithmic Functions

Hash Functions

- Maps data of arbitrary length to data of a fixed length.
- Very much used in databases and security

Hash Functions

How to store long (ID numbers) for a small set of people
For example: \boldsymbol{n} is an ID number, and \boldsymbol{m} is number of people we have
$\operatorname{Hash}(n)=n \bmod m$
$\operatorname{Hash}(n)=n \bmod 7 \quad$ for all numbers n.

collision?

0	$356-63-3102$
1	
2	$513-40-8716$
3	$223-79-9061$
4	
5	$328-34-3419$
6	

Exponential and Logarithmic Functions

$$
\log _{b} x=y \quad \Leftrightarrow \quad b^{y}=x
$$

Relations between Exponential and Logarithmic Functions

Laws of Exponents

If b and c are any positive real numbers and u and v are any real numbers, the following laws of exponents hold true:

$$
\begin{align*}
b^{u} b^{v} & =b^{u+v} \\
\left(b^{u}\right)^{v} & =b^{u v} \\
\frac{b^{u}}{b^{v}} & =b^{u-v} \\
(b c)^{u} & =b^{u} c^{u}
\end{align*}
$$

The exponential and logarithmic functions are one-to-one and onto. Thus the following properties hold:

For any positive real number b with $b \neq 1$,

$$
\text { if } b^{u}=b^{v} \text { then } u=v \quad \text { for all real numbers } u \text { and } v
$$

and
if $\log _{b} u=\log _{b} v$ then $u=v \quad$ for all positive real numbers u and v.

Relations between Exponential and Logarithmic Functions

We can derive additional facts about exponents and logarithms, e.g.:

Theorem 7.2.1 Properties of Logarithms

For any positive real numbers b, c and x with $b \neq 1$ and $c \neq 1$:
a. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
b. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
c. $\log _{b}\left(x^{a}\right)=a \log _{b} x$
d. $\log _{c} x=\frac{\log _{b} x}{\log _{b} c}$

How to prove this?

Using the One-to-Oneness of the Exponential Function

Prove that:

$$
\log _{c} x=\frac{\log _{b} x}{\log _{b} c}
$$

Solution Suppose positive real numbers b, c, and x are given. Let
(1) $u=\log _{b} c$
(2) $v=\log _{c} x$
(3) $w=\log _{b} x$.

Then, by definition of logarithm,

$$
\text { (1') } c=b^{u} \quad\left(2^{\prime}\right) x=c^{v} \quad\left(3^{\prime}\right) x=b^{w}
$$

Substituting $\left(1^{\prime}\right)$ into $\left(2^{\prime}\right)$ and using one of the laws of exponents gives

$$
x=c^{v}=\left(b^{u}\right)^{v}=b^{u v} \quad \text { by 7.2.2 }
$$

But by (3), $x=b^{w}$ also. Hence

$$
b^{u v}=b^{w},
$$

and so by the one-to-oneness of the exponential function (property 7.2.5),

$$
u v=w .
$$

Substituting from (1), (2), and (3) gives that

$$
\left(\log _{b} c\right)\left(\log _{c} x\right)=\log _{b} x
$$

And dividing both sides by $\log _{b} c$ (which is nonzero because $c \neq 1$) results in
© Susanna S. Epp, Mustafa Jarrar, and Ahmad Abusnaina 2005-2018, All rights tegeryedt $\frac{\log _{b} x}{\log _{b} c}$.

